26.

A NUCLEAR REACTOR IN THE SKY

The precise sequence is hazy in retrospect, but Schriever’s slide into an increasingly dangerous confrontation with LeMay probably began over the nuclear-powered airplane. For airmen, the dream of a flying machine propelled by atomic fission meant the possibility of unlimited range. A plane would be able to stay aloft for weeks and even months without refueling. As Theodore von Kármán had told Hap Arnold in Where We Stand, his preliminary report to Toward New Horizons, nuclear propulsion, if attainable, would “secure us the conquest of the air over the entire globe.” Although they ignored almost all the rest of von Kármán’s visionary theorizing, the bomber men of the postwar U.S. Air Force, the “operators” like LeMay, paid enthusiastic attention to his thoughts on this subject.

The program for the atomic-powered airplane, subsequently titled Aircraft Nuclear Propulsion (ANP), had begun in 1946. The Air Force and the Atomic Energy Commission were to spend more than $7 billion on the project. Most of the work was conducted in secret, but with unstinting funds and support from the atomic power enthusiasts among the congressmen and senators on the Joint Committee on Atomic Energy, particularly the nuclear weaponry hawks Senators Brien McMahon of Connecticut and Henry “Scoop” Jackson of Washington, both Democrats.

While the entire Air Force hierarchy wanted an atomic-powered airplane, LeMay didn’t want just any nuclear-driven bomber that would fly from the United States directly to the Soviet Union, drop its hydrogen bombs, and then return for more without ever having to bother with midair refueling or refueling stops at overseas staging bases. He wanted a supersonic one and had levied this attribute on the Air Staff in Washington as a SAC requirement. He was convinced that supersonic flight gave a bomber a much greater chance of survival against enemy fighters and other air defenses. As assistant for development planning, Schriever was charged with recruiting the scientists and engineers who could build the plane for LeMay. As far as he could determine from the men already working on the project and from other extensive exploration, it was possible to design a reactor light enough to power a subsonic bomber, but a supersonic one was out of the question. Generating enough power within the reactor to achieve supersonic flight would create temperatures so extreme that no materials in existence or foreseeable could withstand them. The reactor would melt. His findings were not welcomed at SAC and he was summoned to Omaha.

The meeting took place in LeMay’s office in SAC’s original headquarters at Offutt, fashioned by partitioning up an abandoned Second World War aircraft assembly plant on the base. As was his custom, LeMay was chewing on his cigar as he sat behind his desk. In front of it was a large couch with a couple of generals who were ranking members of his staff and Dr. Carroll Zimmerman, a civilian analyst who was chief of SAC’s Operations Analysis section. Behind the couch were more chairs with other senior members of the SAC staff. Tommy Power, who had circled over Tokyo assessing the damage for LeMay when they had lit that first horrendous firestorm and killed 72,000 to 83,000 people on the night of March 9, 1945, was now a major general and LeMay’s deputy as vice commander of SAC. He sat in a chair close beside the desk. Schriever was beckoned to an empty chair next to him. Bennie was not afraid, but he felt alone, and he was. LeMay pointed a finger at him and said, addressing him coldly by his rank and not by his name, “Colonel, I understand that somebody in the Pentagon is against the supersonic nuclear bomber.” Schriever waited, breathed deeply, and said, “Yes, it is me.” LeMay’s head snapped back a bit at the directness of the answer. Bennie went on to say that he was not opposed to the plane as such, that it was simply a technological impossibility, explaining how subsonic seemed feasible, but that the ferocious heat of supersonic would melt any material they had or could foresee.

They went back and forth for half an hour. LeMay was not going to settle for a subsonic nuclear-powered bomber. Supersonic was what he wanted, that was that. Schriever held his line. “Look,” he said, “I am running the Development Planning Office and I have access to all the top scientists and engineers in this country. And I have not had a single one tell me that they could, in fact, build a nuclear-powered engine that will operate at supersonic speeds. And it’s not me that’s saying that; it is the experts in the country who are saying that.” LeMay did not appear convinced. “If you can find someone who is knowledgeable, a scientist or engineer who understands all the technology that is involved in supersonic flight with a nuclear power plant, I will stand corrected,” Bennie said. “But that has been my job to look into these things.” He was a bit surprised that LeMay did not throw him out of the office right then. Instead, the general appeared to take what had been said in good nature and addressed him by name this time. “Schriever,” he said, “I am going down to the gym to do some judo. Would you like to come down?” Power had become an expert at this Japanese art of unarmed combat. He held the highest rank, black belt. LeMay had apparently decided to try it as well. Schriever could see in a flash in his mind’s eye what would happen to him in a judo bout with Curtis LeMay after what he had just told the big man. “No, not today, General,” he said. LeMay chuckled. The meeting broke up.

Despite what Bennie had learned about the heat barrier, the supersonic nuclear-powered bomber remained a project of extremely high priority for the Air Force, and work on it continued through the 1950s, long after Schriever had moved on. The success of Admiral Hyman Rickover of the Navy in building nuclear-powered attack submarines, the first of which, the USS Nautilus, was commissioned in 1954, undoubtedly honed the envy of the Air Force leadership. In his March 21, 1955, memorandum to Twining on the future structure of the Air Force, LeMay posited two wings of supersonic nuclear-fueled bombers, a total of ninety such aircraft, in SAC’s inventory by 1965. In January 1955, the Air Force Council, the committee of lieutenant generals at Air Force headquarters under the chairmanship of the vice chief, recommended accelerating the program in order to have an operational atomic-powered bomber by 1963. The idea of airplanes flying around with nuclear reactors in them might seem daft to subsequent generations, given the appalling consequences if one crashed. In the edge-of-battle atmosphere of the Cold War, such risks were rationalized as necessities.

In fact, the Air Force and the AEC secretly installed a three-megawatt, air-cooled nuclear reactor in the aft bomb bay of a converted B-36, designated the NB-36H or Nuclear Test Aircraft, and staged forty-seven flights with it between July 1955 and March 1957. The objective was to test the feasibility of having a reactor in an airplane and find ways to adequately protect the crew from the radiation it gave off. Accordingly, a twelve-ton lead-and-rubber-shielded compartment, with leaded glass windows almost a foot thick, was built into the nose of the bomber. The pattern was to fly the B-36 from a Convair plant at Carswell Air Force Base outside Fort Worth, Texas, to another base near Roswell, New Mexico. There, the reactor would be turned on and the plane sent up again to test-fly over New Mexico before returning to Fort Worth. The B-36 was always followed by a B-50 carrying a unit of specially trained paratroopers who, in the event of a crash, were to jump and cordon off the impact area from the public until cleanup crews of nuclear specialists could arrive.

The path of its forty-seven flights took the B-36 with its radioactive cargo directly over Lake Worth, Fort Worth’s main water supply. Had the plane gone into the lake, the paratroopers could hardly have been of much assistance to the thirsty inhabitants of the city. Schriever became convinced in retrospect that LeMay’s supersonic demand helped to sabotage the project by delaying the creation of a subsonic nuclear-powered aircraft until time and cost and the safety issue doomed the idea. It seems likely, however, that other technological Gordian knots may have rendered the vision of an atomic-powered airplane of limitless range a mirage. Fitting a nuclear reactor into an immensely sturdy vehicle like a submarine was one thing; installing one in a comparatively fragile vehicle like an aircraft quite another. President Kennedy put an end to the dream in 1961 by canceling the project as impractical and unnecessary.

If you find an error please notify us in the comments. Thank you!