7

LEONARDO AND COLUMBUS

THE END OF THE MIDDLE AGES

ROBERT S. LOPEZ SPEAKS OF “THE TWILIGHT OF the fifth century,” “the dawn of the tenth,” and “the glare of the fifteenth.”1 Where scholars grope for information in the scanty records of the early period, in the fifteenth century they are engulfed in a flood of documentary sources, including, from the 1450s on, printed materials.

Once upon a time, a historical theory was formulated and taught to generations of students to explain the transition from medieval to modern times: a crowd of intellectual refugees from the fall of Constantinople in 1453 brought Greek learning to the West and launched the “Renaissance.” The theory, never very convincing to medievalists, then few in number, was exploded beyond recovery by Charles Homer Haskins’s The Renaissance of the Twelfth Century, published in 1927, establishing that Greek science came to the West largely through the agency of the Arabs and that the accomplishments of the European fifteenth century were the continuation of a long process.2

Nevertheless, the fifteenth century has an unmistakably revolutionary demeanor, with its gunpowder artillery, its printed books, its transoceanic voyages, and its flowering of art. The many-sided development at long last carried Europe past Asia to world leadership in technology, at a moment when one element of that advance, the full-rigged ship, was suddenly bringing Europe, Africa, Asia, and the brave New World together in a cultural collision unique to human history.

The most impressive documentation of Europe’s rising creative powers may be found in the notebooks of Leonardo da Vinci (1452–1519). During their successive rediscoveries in modern times, these astonishing collections were mistakenly perceived as sketches of original inventions, products of an individual “Renaissance” genius. The misconception was due in part to the aesthetic quality of the drawings, and in part to a prevailing notion of the character of invention, an exaggeration of the contribution of the individual “inventor” and an underappreciation of the social nature of technical innovation. The historic value of Leonardo’s “notebooks”—actually an immense scattering of sketches and jottings—lies less in their author’s own contributions to engineering than in their incomparable illustration of the atmosphere in which he lived, a time in which dreamers, tinkerers, and artist-inventors were applying themselves on the frontiers of technology opened by the discoveries of their medieval predecessors. In Bert S. Hall’s words, the sketches “tell us about the processes of invention and the manner in which available techniques of the later Middle Ages and Renaissance could be put together in novel patterns.”3

Again and again, Leonardo’s conceptions echo those not only of his peers but of his predecessors, sometimes of a much earlier era. His famous sketch of an ornithopter, or flying machine, was preceded not only by earlier speculations about flight but by an actual attempt, made in the eleventh century by an English inventor named Eilmer, recorded by chronicler William of Malmesbury:

He was a man learned for those times, of ripe old age, and in his early youth had hazarded a deed of remarkable boldness. He had by some means, I scarcely know what, fastened wings to his hands and feet so that, mistaking fable for truth, he might fly like Daedalus, and, collecting the breeze on the summit of a tower, he flew for more than the distance of a furlong. But, agitated by the violence of the wind and the swirling of air, as well as by awareness of his rashness, he fell, broke his legs, and was lame ever after. He himself used to say that the cause of his failure was his forgetting to put a tail on the back part.4

Other visionaries who drew or described flying machines all slipped, like Leonardo and Eilmer, into the ornithopter error, the imitation of wing-flapping birds. Leonardo’s pyramidal-shaped parachute was also anticipated, though only on paper (and more recently) by sketches dated between 1451 and 1483. Leonardo’s chute looks more practical, but nobody ventured to try out the idea for another three hundred years.

Not only the inventions but the art and literature that are the most famous products of the Renaissance were firmly rooted in the Middle Ages. Giotto, Dante, Petrarch, Boccaccio, and Chaucer all lived before 1400, and the last four all owed something to the work of forebears, from the Provençal poets to the authors of the fabliaux.

Renaissance artists profited from the Commercial Revolution’s creation of the affluence that underwrote art. When he was in Avignon, Francesco Datini treated artistic works like any other of the commodities he dealt in, ordering paintings from Florence by subject matter and size:

[Send me] a painting of Our Lady with gold background…by the best master who is painting in Florence, with several figures. In the middle, Our Lord on the cross or Our Lady, whichever you find…with fine big figures, the fairest and best that you can find for 5½ to 6½ florins, but not more…A picture of Our Lady of the same kind, on gold background, but a little less grand, for the price of 4½ florins, but no more.

Later one of his partners wrote to the correspondents in Florence, “Pictures are in no great demand here; they are occasional items which one must buy when the painter is in want.” Artists, Francesco thought, had too high an opinion of themselves. “Are they all brothers or cousins of Giotto?” he inquired sarcastically.5

Columbus’s voyage, despite its theatrical circumstances, grew out of the slow maturing of the full-rigged ship, with its complement of navigational instruments, and their inevitable application to the search for a sea route to Asia. European perception of the world outside the Mediterranean and Baltic basins was gaining focus as contacts multiplied. Delegates from the Ethiopian Christian Church attended the Council of Florence in 1441. Ethiopia, on the Gulf of Aden, was halfway to India. In 1487, the same year the Portuguese government sent Bartolomeu Dias off to find the Cape of Good Hope, and another expedition westward from the Azores to explore the Ocean Sea, it dispatched Pero da Covilhã overland via Egypt to gather information on the Indian Ocean.6

Besides ocean navigation, two other technical systems with roots in the earlier Middle Ages came to the fore in the fifteenth century. The first was the assembly of paper, press, ink, and type into letterpress printing, which at once made a torrent of information on a range of subjects available to a wide public, in fact, the entire literate Western world. The second was the improvement of gunpowder weaponry into the effective firearms that conferred on Europeans an advantage that has been exaggerated but was nevertheless significant in their sudden confrontation with the rest of the world.

In the political sphere, the fifteenth century witnessed the emergence of several large national states, not only in western but in northern and eastern Europe. As Poland, Russia, Sweden, and Brandenburg-Prussia squeezed the Hanseatic League out of its power and privileges, German ships ceased to dominate the northern seas, while the central European metal mines assisted the rise of the Habsburg dynasty.

The swarm of Italian city-republics, led by Venice, Milan, Florence, and Genoa, competed ferociously for political and commercial advantage, at first oblivious of the rise of a new power: the Ottoman Turks, who captured the world’s attention along with Constantinople in 1453. Thenceforward the Turks contested the eastern Mediterranean with the Europeans, contributing to the motivation for a new route to Asia.

Crowded and turbulent, only in retrospect could the fifteenth century be seen for what it was, the hinge by which the medieval Western world moved forward into modern times.

“The Admirable Art of Typography”

Half a century after the event, Johann Schoeffer, son of Gutenberg’s assistant Peter Schoeffer, in a preface to a newly printed edition of Livy, wrote unequivocally: “The admirable art of typography was invented by the ingenious Johann Gutenberg in 1450 at Mainz.”7 Later the younger Schoeffer reneged and claimed the invention for his father, but there is little doubt that the credit has always properly been awarded to Gutenberg. A lawsuit against the inventor by his financial backer Johann Fust, Peter Schoeffer’s father-in-law, contains what most scholars feel is conclusive evidence.

There are, however, qualifications attached to Gutenberg’s title. The Asian priority of invention of movable type is now firmly established, and that the Chinese-Korean technique, or a report of it, traveled westward is almost certain, though the path of transmission remains unknown. Of the four major components of letterpress printing, paper already existed, and the other three—press, type, and ink—were original with Gutenberg only in a narrow sense. Printing, in fact, has often been cited as a good illustration of the social character of invention.

In the late fourteenth century, following the introduction of xylography—wood-block printing, probably learned from China—a popular art form sprang up, a religious picture with some brief text added, carved in wood and printed. In the Low Countries and the Rhineland, booklets known as “Poor Man’s Bibles” were mass-produced, along with playing cards (newly invented), posters, calendars, and short Latin grammars called “donats,” from the Roman grammarian Aelius Donatus.8

Out of the wood-block donats and playing cards, before the invention of movable type, came that of engraving, the incising of copper plate with a chisel-like implement (burin or graver), permitting the reproduction of many more copies than were possible with a woodblock.9 By midcentury, engraving was an established technique in south Germany and north Italy on its way to becoming an independent art form.

Meanwhile Asian printing was reaching maturity in China and Korea, where wooden type was supplanted by bronze in the early fifteenth century; shortly after, in Europe, a similar progression took place. Wood type was first employed by bookbinders to stamp titles on manuscript bindings,10 and as early as the 1420s, Laurens Janszoon of Haarlem in the Netherlands may have experimented with it for general use.11 It soon became clear to European printers, as it had to Asian, that wooden type was not satisfactory in either uniformity or durability. Gutenberg, by trade a silversmith, and other metalworkers realized that their die-cutting technique could be applied to block printing via a clay matrix on which the text was struck letter by letter; the whole page, in relief, was then cast in lead. Gutenberg employed the technique in Strasbourg, where he had temporarily relocated from Mainz; it was also practiced in the Netherlands and the Rhineland.

Thus experimenters were converging on the final step to movable type. Alignment gave problems, and the process of striking each letter in clay threatened to deform the neighboring letter. In 1426 the combination of die cutting, matrix, and lead casting suggested to Gutenberg the potential of individually cast metal letters.12

Spectroscopic analysis shows early type metal to have been an alloy of lead, tin, and antimony, a combination unchanged in centuries of letterpress typography. At first the dies were also soft metal, but in the 1470s these were replaced by steel, an improvement credited to Peter Schoeffer, Gutenberg’s assistant (and Johann Schoeffer’s father). Including joined letters and symbols, each typeface in upper and lowercase required about 150 characters. For each a steel punch or die was first cut and employed to form a mold in which the soft-metal type character was cast. Both punch and type had to be finished by hand filing, more difficult with the hard steel punch, which, however, lasted much longer than the soft type.13

Typesetting was also laborious, the typesetter picking each character from the composing stick with tweezers, setting line by line in the chase, and taking and correcting proof. Each page of the Gutenberg Bible probably took one man one day. Proofreaders scanning the Latin text naturally indicated their corrections in Latin, a custom whose vestiges remain, as in “stet” for “let it stand.”14

Gutenberg’s typeface imitated “Gothic,” a thick “black-letter” script developed out of Caroline minuscule in the tenth century. In Germany the style was popular and remained in vogue until modern times, but in Italy it was perceived as out of step with the new classical spirit. In 1465 two German printers in Subiaco invented a typeface for an edition of Cicero that developed into what subsequent generations called “Roman.” A few years later printers in Venice introduced “italic.” The new faces were cut with a skill often amounting to art, as in the Roman face created by Nicolas Jenson, a French printer in Venice who had studied under Gutenberg.15

The standardization of individual characters imposed by movable type proved an added benefit: the uniformity of product often regarded as a negative feature of mass production was a positive aid to the reader of books.16

The commercial success of block printing had meanwhile stimulated another key development. Printing required ink with different characteristics from those of water-based writing ink, which smudged, refused to spread uniformly, and showed through on the reverse side. Italian painters in the previous century had invented the technique of mixing pigments (insoluble natural substances) suspended in linseed oil. Gutenberg experimented successfully with a mixture of lampblack (soot recovered from chimneys), turpentine, and linseed or walnut oil. Reduced by heating, the new ink shone black and adhered to slightly dampened paper without blurring.17 The old oak-gall and iron mixture continued in use for writing, as Shakespeare notes in Cymbeline: “I’ll drink thy words…though ink be made of gall.”18

image

Model of Gutenberg press. [Science Museum, London.]

Along with type and ink, Gutenberg had another flash of insight, that the ancient wine-and-oil press, already modified for paper manufacture, required only a slight further change to assume a function in printing (Chinese printing did not employ a press, relying on the rubbing technique used for woodblocks). Once its configuration was worked out, the wooden screw press, consisting of a sliding flat bed and an upper platen, could be operated rapidly to produce a sharp impression. Its steeply pitched screw required only a quarter turn of the lever, and the sliding bed allowed easy inking. Two-color and multicolor printing were introduced in the very first printed works, the celebrated forty-two-line Bible of Gutenberg and the Psalter which Fust and Schoeffer, after winning their lawsuit against the inventor, produced with his equipment. The red second color of the Bible and the multiple colors of the Psalter were achieved by the simple process of removing from the composed page characters or passages to appear in color, inking them separately, and returning them to the press, so that all colors were produced in a single impression. Problems of register (overlapping of colors) were thus avoided at the cost of some production time.19 Engraving was quickly absorbed into the printing process, though a number of early printed works in small editions employed hand illumination, copy by copy, for their decoration.20

Two years after the appearance of Gutenberg’s Bible in 1455, the first printing press in Italy went into operation, followed by others in Paris and London (Caxton’s), and by 1480 nearly every city in Europe had at least one press.21 The economics of the invention were irresistible. A Florentine scribe could produce a copy of Plato’s Dialogues for one florin; a press charged three florins per quinterno (five sheets, or eighty pages of octavo) for typesetting and printing, and could produce an unlimited number at the cost of paper and ink.22

The earliest print shops were much like those still operating in Mark Twain’s day: cases to hold the type; a table with shelves of blank leads and room for composed pages; composing stick and galley; a copyholder; tweezers to handle the type; the press stone on which pages were prepared for printing; the chase in which pages were tightened into rigid form with the aid of wooden wedges; an inkpot and ink pads; a table to hold blank sheets and receive the printed pages; a tub of water to dampen the sheets to improve the impression; and a stretcher to hang the freshly printed sheets to dry.23 Some of the very earliest practitioners established the tradition of the itinerant printer, carting equipment from place to place. Many of the first printers were former priests, whose knowledge of Latin was helpful; many editors and proofreaders were former abbots.24

Venice emerged as the printing capital of Europe, publishing 2,789 books by 1500. Altogether, the “incunabula” (“newborn”), the name given to books published before 1500, numbered some 40,000 editions of various works totaling 15 to 20 million copies.25Most (77 percent) were in Latin, and almost half (45 percent) were religious works (94 Bibles in Latin, 15 in German, 11 in Italian). But the early medieval encyclopedias of Isidore of Seville, Cassiodorus, and Martianus Capella, as well as the later encyclopedia of Bartolomaeus Anglicus, were issued in printing after printing through the sixteenth century. Many agricultural treatises, mostly Roman, were printed. Boethius’s work on arithmetic (De arithmetica) was printed repeatedly from 1488 on.26 In 1493 Columbus’s letter to the king and queen of Spain, detailing his discovery, was printed (translated into Latin) and by the end of the year was circulated in eleven editions to an eager European public.27 Before or shortly after 1500, the works of Robert Grosseteste, Albertus Magnus, Thomas Aquinas, Roger Bacon, and most of the other leading medieval writers on scientific subjects reached print. A few contemporary works were printed, including two arithmetical texts that employed Leonardo Fibonacci’s Hindu numerals, contributing to the development of algebraic notation and the rise of mathematics.28

Experience led printers to smaller typefaces and standardized book sizes, as for the first time in history a large educated class was given access to a wide array of knowledge. The literate elite, once all but limited to the educated clergy, now included not only the nobility, many of whose sons attended the universities, but a large and growing number of lay commoners, members of the middle class created by the Commercial Revolution. Frankfurt and other cities organized book fairs, and peddlers hawked the latest editions through the towns. If printing was born in Asia, the honor—and profit—of turning it into an efficient mass-production process, a democratic form of communication, belongs incontestably to Europe.

Of all the superlatives accorded to the invention through the centuries since Gutenberg, one of the most acute is that it represented “a technological advance which facilitated every technological advance that followed it” (Derry and Williams).29

Guns and National States

If the printed book was the most “admirable” innovation of the fifteenth century, the firearm, now reaching maturity after a slow start, was the most dramatic. Erratic black powder was tamed to consistency by the invention in the 1420s of “corning,” or granulation, by which the powder, dampened by vinegar, brandy, or “the urine of a wine-drinking man,” was passed through a sieve, forming coarse granules, not only safer to handle but more reliable in action. Experimentation with mixtures improved explosive power, and consequently range and accuracy. Gradually the weight of the projectile diminished in proportion to the weight of the gun, and the weight of powder rose in proportion to the projectile.30 The hot-wire ignition was replaced by the slow match, a cord soaked in niter and alcohol, dried, and set aglow in preparation for combat. The touchhole of the hand weapon was moved to the side and a priming pan added. In about 1425 an S-shaped device called a “serpentine” was provided to hold the slow match; pressing one end brought the match into contact with the priming powder, making the gun an effective one-man weapon.

The potential of such a gun, sometimes called a “culverin,” was illustrated at the siege of Orléans in 1429. French knights were attempting to storm the Augustins, an English-held fortress across the Loire, and a “big, strong and powerful Englishman,” according to Joan of Arc’s squire Jean d’Aulon, was valiantly resisting. D’Aulon pointed him out to a gunner named Jean de Montesclere, who aimed his weapon, fired, and caused the big Englishman to topple over, opening the way to capture of the stronghold.31

Late in the century, the firing mechanism was enclosed and given a spring trigger; when a wooden stock was added to absorb the recoil, the matchlock musket was complete. Its successors, the wheel lock and the flintlock, appear in some fifteenth-century sketches, including those of Leonardo da Vinci, but were not employed on the battlefield for another century.32 The new weapon had its shortcomings compared with the bow or crossbow, including mechanical failure, problems with wet weather, and reloading, which took several minutes during which the musketeers had to be protected by pikemen interspersed among their formations. Nevertheless, by 1500 the musket, or arquebus, was making its presence felt on the battlefield, and over the next few decades it succeeded in supplanting the powerful steel crossbow.

Similarly, gunpowder artillery crossed a threshold. Fabrication was made easier by a new technique, casting in a mold to form a hollow cylinder around a mandrel (core); using the same mold guaranteed identical calibers.33 In the closing stage of the Hundred Years War, the royal French artillery under the command of the Bureau brothers, a pair of talented smiths, used iron cannonballs to batter down one English-held castle and town wall after another and even performed effectively in the field, as at Castillon, the war’s last battle, in 1453.

image

A fifteenth-century siege: the cannon at lower right lacks a gun carriage, and fires stone cannonballs. [Wavrin, Chroniques d’Angleterre, British Library, Ms. Royal 14 E IV, f. 59v.]

That same year Ottoman sultan Mahomet II bombarded Constantinople with giant cannon fabricated at Adrianople by Orban, a Byzantine defector. The largest, called “Mahometta,” hurled stone cannonballs of 1,000 pounds and needed more than 100 soldiers to maneuver it. Its detonation was said to cause miscarriages among pregnant women, an inconvenience that proved short-lived; “Mahometta” cracked on its second day of action and had to be abandoned.34 Orban’s other cannon were more effective. Loaded on wagons and hauled to Constantinople by teams of thirty pairs of oxen, the fifteen-ton bronze guns were rested on the ground and chocked up by stones for firing elevation.35

The Turks’ old-fashioned stone-shooting big cannon were the wave of the past. That of the future lay in the smaller, more maneuverable, more numerous iron-shooting European artillery.36 The Bureau brothers improvised a primitive version of the gun carriage, which was improved in the second half of the century with spoked and dished wheels, and finally by the introduction of trunnions, forming a cradle that permitted the muzzle of the gun to be raised or lowered and also absorbed some of the recoil.37Thenceforward cannon were a regular feature of battle as well as siege. The famous condottiere Bartolommeo Colleoni (1400–1475) introduced a new tactic, training his infantry to open gaps through which the artillery, stationed behind it, could fire. In 1475, at the siege of Burgos, in Spain, the last employment of the old catapult artillery was recorded.38

Gunpowder weapons had three conspicuous effects. First, artillery reinforced the trend toward the national professional army, since only a wealthy central government could afford it. Sovereigns often took a personal interest in their martial toys; John II of Portugal and Emperor Maximilian of Germany were two who expressed not only enthusiasm for but genuine expertise in the “art of gunnery.”39 Second, small arms made the armored knight obsolete, not so much because his armor did not stop musket balls as because the new musket infantry was cheaper to arm and equip and more flexible to employ, and the emerging pistol-armed cavalry of the sixteenth century much more formidable. Breastplates and helmets continued in fashion through the seventeenth century, but chain mail and full armor disappeared except for parades and tournaments. Individual prowess, hallmark of the age of chivalry, was curtailed as the new-model army extended the principle of standardization from arms and ammunition to uniforms and drill. Third, the curtain-walled castle was superseded by the low-profile, thick-rampart fortress, capable of absorbing the shock of heavy cannonballs and furnishing a good platform for defensive artillery but ill adapted to service as a private residence.40 The new-style fortifications mostly supplanted old-fashioned city walls and were manned by garrisons belonging to the central government. The aging castles of the feudal nobility sank to the status of not very comfortable country houses, storage depots for gunpowder and cannonballs, or prisons for distinguished captives.

Joseph Needham points to China’s influence in the large social changes at both ends of the European Middle Ages: “Thus one can conclude that just as Chinese gunpowder helped to shatter this form of society at the end of the period, so Chinese stirrups had originally helped to set it up.” Neither invention had any perceptible impact on Chinese society, owing, in Needham’s interpretation, to its relative stability compared with Western society.41 However that may be, the origins of feudalism in Europe involved much more than stirrup, horseshoe, and saddle, and, by the same token, feudalism was already in decline when gunpowder gave it a final push toward the grave by benefiting national governments at the expense of the old castle-building, armor-wearing, horseback-riding feudal aristocracy.

A subtler effect of the new weaponry and fortifications was their impact on the incipient engineering profession. Expertise was suddenly in great demand. In response, technical treatises began to appear. The first important one came from southern Germany, where metal mining contributed to the growth of an arms industry. The Bellifortis (Strong war) of Konrad Kyeser of Eichstadt (1366—after 1405) remained a bible for military leaders for more than a century. Kyeser has been called “the first great engineer who has left us a well-established technological oeuvre” (Bertrand Gille).42 A physician by profession, Kyeser published his work at the beginning of the fifteenth century, when the gunpowder age was still new. Among his sketches are a battery of cannon mounted on a turntable to be fired in succession, an artillery-carrying chariot, and a long-barreled, small-bore culverin resting on a stand. But of an array of proposed war chariots armed with pikes, lances, scythes, and hooks, only two carry rudimentary cannon, and the incendiary projectiles Kyeser sketched were ammunition not for guns but for crossbows.

image

Sketch of battery of cannon mounted on a turntable, to be fired in succession, from Konrad Kyeser’s Bellifortis (c. 1405). [Tiroler Landesmuseum Ferdinandeum, Innsbruck.]

At about the same time as Bellifortis, another military treatise, of a different coloration, appeared. Cleric Honoré Bonet’s (or Bouvet’s) The Tree of Battles set down on paper the unwritten “law of arms” accumulated by the knightly class over the previous centuries. Accepting war as inevitable, Bonet attributed its evils and injustices to “false usage, as when a man-at-arms takes a woman and does her shame and injury, or sets fire to a church.” Civilian populations should be respected, for “the business of cultivating grain confers privileges on those who do it…In all wars poor laborers should be left secure and in peace, for in these days all wars are directed against the poor laboring people and against their goods and chattels. I do not call that war, but pillage and robbery.” Bonet sought to combine the chivalric tradition with the new military age, admonishing his reader to defend “justice, the widow, the orphan, and the poor,” while accepting discipline, obeying orders, and avoiding impulsive, individualistic action. The modern soldier owed his loyalty “first to the king, then to his lord, and finally to the captain.” He must always remember that his actions were performed “as a deputy of the king or of the lord in whose pay he is.”43

Knights-errant had ridden into the sunset. In their place were professional soldiers, who “followed their mercenary calling / And took their wages and are dead.”44

The Artist-Engineers:
Leonardo da Vinci and Company

Like Bellifortis, The Tree of Battles enjoyed great popularity through the fifteenth century, and from what we know of Leonardo da Vinci and some of his peers, it is not unreasonable to suppose that they shared Bonet’s views on war. The rather bloodthirsty character of some of their sketches reflects less a martial spirit than a love of gadgetry, much of which was, at the moment, necessarily military. Europe’s long-maturing mechanical genius was neatly, if fatally, converging with its graduation from medieval to modern warfare.

The new generation of engineers was not, however, exclusively focused on war. Even Konrad Kyeser included in Bellifortis siphons, pumps, waterpowered mills, furnaces, and baths.45 Leonardo da Vinci’s predecessors and contemporaries were inheritors not only of Guido da Vigevano and Konrad Kyeser but of two other, older traditions, that of Villard de Honnecourt and the master masons of Gothic architecture, and that of Roger Bacon, Jean Buridan, and the other clerical intellectuals fascinated by the secrets of the natural world.

The most striking aspect of the work of the fifteenth-century artist-engineers, abundantly illustrated in Leonardo’s notebooks, is the rich redundancy in which ideas for mechanical invention now multiplied, new ideas for performing old functions, ideas for new functions, alternate approaches to problems, new applications of known principles, new combinations of familiar components. Noteworthy too is a spirit that emerges—a spirit of enjoyment, of amusement even, reminiscent of the toy mechanisms with which Heron of Alexandria entertained his circle. The wing-flapping aircraft, the helicopterlike whirlybirds, the parachutes breathe the spirit of Johan Huizinga’s homo ludens, man at play.46 It was a spirit that reached beyond the engineers. The mechanically minded aristocracy of the seventeenth and eighteenth centuries was foreshadowed in the fifteenth; Emperor Maximilian was one of several dignitaries who employed the wood lathe as a toy.47

Yet if the artist-engineers were dreamers, they were also serious thinkers, concerned, beyond the practical applications of their devices, with the large questions that had long occupied the university scholars. Leonardo’s restless curiosity drove him from studying anatomy by dissection to interviewing workmen on the Visconti canal in Milan. He echoed Albertus Magnus in his insistence on firsthand knowledge: “To me it seems that all sciences are vain and full of errors that are not born of experience, mother of all certainty.”48

Villard de Honnecourt had pioneered the combination of art and engineering, and of the transmission of technology by document in place of the age-old oral-and-manual tradition. The fifteenth-century artist-engineers carried out the revolution Villard had signaled, coincidentally just as printing arrived on the scene. Thus technology passed almost overnight through two shifts of medium, first from oral to written and drawn, and second from manuscript to print. An important social result followed: “The illustrated treatise and its printed descendants,” writes Bert S. Hall, “fostered contacts between the technician’s work and the world of high culture” as the treatises found an enthusiastic audience among the educated elite.49

The authors of the treatises were themselves neither aristocrats nor peasants but members of the rising middle class. Leonardo sprang from a long line of notaries and was apprenticed to a goldsmith; Leon Battista Alberti was the son of a new-rich banking family; Paolo Toscanelli of a family of silk-and-spice merchants.50 Bourgeois intellectuals par excellence, they differed in their artistic abilities but shared the improvements in expression recently achieved by painters: Flemish realism and Italian linear perspective, far more effective for their purposes than the old medieval illuminators’ style. Leonardo sometimes sketched a sequence of variations on the same device, suggesting that he improvised as he drew, something others may have done as well; thus the drafting pen became a tool for inventing, perhaps aided by the availability of cheap paper.51

Among the best known of Leonardo’s predecessors are these:

Filippo Brunelleschi (1377–1446), best remembered as the architect of the brick dome of the Duomo of Florence, one of the great Renaissance architects, and inventor of many mechanical devices. He took a creative interest in problems of statics and hydraulics, in mathematics, and in clockwork. He also pioneered patent protection for inventors, receiving from the Republic of Venice the first patent ever awarded.52

Mariano di Jacopo Taccola (1382–before 1458), usually known as II Taccola, one of a number of outstanding engineers of Siena, a small but combative rival of Florence. Called “the Sienese Archimedes,” II Taccola was known primarily as a military engineer but was a thinker of wide interests as well as a talented painter. Informed rather than innovative, he had a command of existing technology from which Leonardo borrowed. His two books, De ingeneis (On inventions) and De machinis (On machines), contain many hydraulic devices, including a mill driven by water falling from a tank kept full by pumping: the miller could pump in the morning and do other chores for the rest of the day while the mill operated, a sort of early version of today’s pumped-storage power technology.53 Taccola also sketched a caisson, a device revived from Roman bridge engineering: a double-walled box lined with concrete sunk in the stream and filled with rubble as part of a pier foundation.54

The author of the “Hussite War Ms.,” an unusual anonymity among the artist-engineers, identified only as a south German from the same region as Konrad Kyeser. His work, published about 1430, contains the first “certain representation” (Bertrand Gille) of the crank-and-connecting-rod system with flywheel,55 in addition to hoisting apparatus, windmills, and a diver equipped with waterproof tunic, lead-soled shoes, and diving helmet. The author’s consistent practicality, and the appearance of similar diver’s rigs in other manuscripts, suggest that such gear was actually used in recovering sunken cargo.56

Paolo Toscanelli (1397–1482), a Florentine physician, geographer, and astronomer. To Brunelleschi’s dome, Toscanelli added a great gnomon, which with the marble-flagstoned cathedral floor formed a giant sundial, determining the summer solstice and the dates of movable feasts. Toscanelli taught mathematics to Leonardo and gave impetus to Columbus; having compiled a map to show how the earth could be circumnavigated, he speculated on a westward route to India in a letter to an adviser of Alfonso V in Lisbon, who showed it to Columbus.57

Nicholas of Cusa (1401–1464), cardinal, Church reformer, mathematician, and experimental scientist, who like Nicholas Oresme believed that the earth rotates on its axis every twenty-four hours. He too expressed skepticism of received wisdom: “All human knowledge is mere conjecture and man’s wisdom is to recognize his ignorance” (De docta ignorantia, On learned ignorance, 1440).58 His study of plant growth proved that plants take nourishment from the air, and that the air has weight. He also discovered a dozen lost comedies of the Roman playwright Plautus.

Leon Battista Alberti (1404–1472), sometimes described as the prototype of the Renaissance man. His range of talents included sculpture, poetry, mathematics, and cryptology; his fame rests chiefly on three classic studies: the dialogue treatise Della famiglia(On the family), the book Della pittura (On painting), and especially the ten-volume De re aedificatoria (On architecture), printed in 1485, covering a range of subject matter but centering on town planning. “Curious, greedy for knowledge, endeavoring to understand, to explain, and to generalize” (Bertrand Gille), he has often been compared with Leonardo in his breadth of outlook.59

Roberto Valturio (b. 1413), whose De re militari (On military matters) became in 1472 the first engineering work to be printed. A copy was in Leonardo’s possession. Among Valturio’s devices was a windmill-propelled tank similar to that of Guido da Vigevano, and a boat propelled by five pairs of paddle wheels cranked from a single power source.60

Among Leonardo’s own generation, some names are especially worthy of note:

image

Windmill-propelled tank, sketched by Roberto Valturio. [Science Museum, London.]

Johannes Müller (1436–1476), better known as Regiomontanus, who along with Fra Luca Pacioli is credited with stimulating critical examination of Ptolemaic astronomy. Regiomontanus (Latin for Müller’s birthplace, Königsberg), in collaboration with Austrian mathematician Georg Feuerbach (1423–1461), produced new translations of Ptolemy’s works that ultimately led to the revolution in cosmology which produced the Copernican system.61

Francesco di Giorgio Martini (1439–1502), another Sienese, a painter, sculptor, city planner, and architect, besides being an engineer whose talent “equaled that of Leonardo” (Bertrand Gille).62 He designed fortresses and weapons, including an ancestor of the land mine. A copy of his manuscript Trattato di architettura civile e militare (Treatise on civil and military architecture) survives with Leonardo’s annotations.63 Among its devices is a more sophisticated version of Villard de Honnecourt’s waterpowered saw: a crank and connecting rod move the saw, with a device to advance the workpiece.64 Even more notable is the assembly of suspended weights on short arms that anticipates by 300 years one of Watt’s most elegant inventions, the fly-ball governor. Another of Francesco’s sketches shows an early version of the water turbine, an improved horizontal waterwheel driven by a stream directed on it by a conduit.65

Fra Luca Pacioli (1450–1520), a mathematician closely associated with Leonardo. He composed the Summa de arithmetica, geometria, proportioni et proportionalità (Synthesis of arithmetic, geometry, proportions, and proportionality), published in Venice in 1494. Based on the work of Leonardo Fibonacci, it was the second printed textbook on mathematics (the Treviso Arithmetic of 1478 was the first) and contains a pioneering treatise on double-entry bookkeeping. A second book, De divina proportione (On divine proportion), was illustrated by Leonardo da Vinci’s drawings of symmetrical figures.66

Polydore Vergil (1470–1555), whose De rerum inventoribus (On the inventors of things, 1499) was the world’s first history of technology.67 Polydore inaugurated a long-lasting tradition of Eurocentrism in technology history; of Asia’s contributions he was aware only of cotton and silk. Sent to England by the pope to help collect Peter’s pence, a special English contribution to Rome, he stayed long enough to write a three-volume history of England’s recent kings that became a principal source for Shakespeare’s historical plays.

Marc Antonio della Torre (1473–1513), a professor at the University of Padua and close friend of Leonardo. His early death prevented fruition of an important project, an anatomical textbook planned with Leonardo; had they found time to execute it, Charles Singer speculates, “the progress of anatomy and physiology would have been advanced by centuries.”68

Thus Leonardo had numerous precursors, peers, and associates in the creation of his “notebooks”—in Ivor Hart’s description, “thousands of pages…[the] fevered and disordered activity of a lifetime—notes that teemed with scientific discussions based on observations and experiments; notes that swept through a wide range of problems in art, science, philosophy, and engineering.”69 Coming into the world as an illegitimate son, he missed out on university education, but he nevertheless had an education, and not a bad one. In the studio of Andrea del Verrocchio, besides painting and sculpture, he learned something of anatomy and algorism, how to cast guns, bells, and statues, and the mechanical arts, “a smattering of everything,” which he rapidly expanded through “an immense and attentive curiosity” (Bertrand Gille).70

One of the first, if not the first, to study intensively the problem of friction in machine components, Leonardo sketched ball bearings and roller bearings that were new to him and probably to his time, although bearings are believed to have been used by the Chinese, the Romans, and other ancients. To the problem of translating rotary into reciprocal motion and vice versa he offered several solutions involving skillfully designed gears, one of which was employed by “all the constructors of machines in the sixteenth century” (Bertrand Gille).71

Where his conceptions represent improvements on existing devices they are often impressive, like the file-making machine whose hammer, mounted on a movable platform, is advanced by a long screw; a gear system coordinates the rise and fall of the hammer with the turn of the screw while advancing the file the proper distance for each notch.72 Also in the realm of mechanical engineering, the notebooks include a lathe, hand powered or treadle powered with flywheel, a mechanical saw, a screw-cutting machine, a variable-speed gearing device, a mechanical turnspit, a lens grinder in which grindstone and lens revolve at different speeds,73 a log-boring machine to meet the demand for city water conduits, a variety of trip-hammers, and many more variations on known themes.74 Among his conceptions in textile machinery is a teaseling machine that stretched the cloth between two rollers, one of which, turned by a horse-powered winch, pulled the cloth under a beam armed with teasel heads; a machine much like it, introduced in the British textile industry, caused riots among seventeenth-century hand teaselers.75 A multiple-spindle spinning machine of Leonardo’s was likewise finally realized in Britain in the seventeenth century.76

image

Lathe and mechanical saw, drawn by Leonardo da Vinci. [From Codex Atlanticus, 381 r.b. Science Museum, London.]

image

Leonardo da Vinci: a rack of guns that rotated for firing, cooling, and loading. [From Codex Atlanticus, 56 v.a. Science Museum, London.]

In military engineering, Leonardo improved on Konrad Kyeser’s turntable battery with a triple rack of guns that rotated into positions for firing, cooling, and loading, and on the wind-propelled chariots of Guido da Vigevano and Roberto Valturio with an armored wagon hand-cranked from inside. His breech-loading cannon have a modern look, as does his explosive shell, which he describes with innocent enthusiasm as “the most deadly machine that exists.” His interest in the paths of projectiles foreshadows the study of ballistics, an important contributor to the cooperation of science and technology. For a fortified island, where a bascule (draw) bridge would be inappropriate, he designed a swing bridge, mounted on a pivot—an idea that may have been wholly original and that, like the bascule, was resurrected and built many times by modern bridge engineers.77

image

Leonardo da Vinci: truss bridge above, swing bridge center, and pontoon bridge (barely visible) below. [From Codex Atlanticus, 312 r.a., Science Museum, London.]

In civil engineering, Leonardo produced designs for truss bridges, plans for making the Arno navigable by ocean ships all the way to Florence, swiveling cranes for building construction, a domed church ringed with chapels, and a model city plan with streets on two levels.78 Sketches of an array of scientific instruments—hydrostatic balances, pedometers, hygrometers, anemometers—show the appreciation by Leonardo (and others who made similar drawings) of the need for instrumentation in research, a need destined not soon to be met.

Aside from their quantity, eclipsing the output of any of his contemporaries, the quality of Leonardo’s sketches, “miraculously precise and graceful,” gives the notebooks a unique distinction. But from the viewpoint of the history of technology, perhaps their most interesting aspect is the author’s vision of the relationship between science and technology. “He perceived the need for analyzing the more complex machinery of the day,” says Bertrand Gille, “and attacking the problems of friction, stress in materials, reduction and augmentation of power, and transformation of motion.”79 His observations were acute and tireless; just as in attempting to design a flying machine he carefully imitated the movements of birds, so in striving to mechanize textile machinery he studied the movements of the clothworkers.

Unfortunately, through a series of accidents Leonardo’s notebooks remained unpublished and almost unknown until centuries after his death; some of the most important were rediscovered in a Madrid archive as late as 1967. Consequently, most of his conceptions never bore fruit. Yet relatively little was lost. The work of Leonardo’s colleagues, from whom he himself had freely borrowed, continued without interruption to be copied, adapted, and, by later ethical standards, plagiarized. Francesco di Giorgio Martini’s sketches of a roller mill, a horse treadmill, and a suction pump were copied without attribution in sixteenth- and seventeenth-century books and, passing to the East, were incorporated into the great Chinese encyclopedia of 1726, symbolizing the transformation that had taken place in the technological relationship of East and West.80

Thus, even if the specific ideas depicted in Leonardo’s notebooks had little impact, the spirit that created them, “the irrepressible taste for mechanical achievements” shared by Leonardo and his fellow artist-engineers, their “constant and generalized preoccupation with machines and mechanical solutions” (Carlo Cipolla) had tremendous influence.81 True, “the engineers’ drawings [were] sometimes more advanced than their practical achievements” (Bertrand Gille),82 but their conceptual renderings were often legitimate auguries of the future (even Leonardo’s bravura conception of a bridge over the Golden Horn at Constantinople has been realized in the twentieth century). The quantity and quality of their ideas “self-reinforced” (Cipolla); the stream of books on mechanics became, in the two centuries that followed, and with the aid of the printing press, a torrent.

Fifteenth-century Technology: Incremental Gains

The innovations actually introduced into the technology of the fifteenth century stand in contrast to the freewheeling ideas of the artist-engineers. Where the drawings in the sketchbooks soar beyond the existing means of realization, the changes introduced in the forges, workshops, and mines were nearly all small, practical, and incremental. Some were among the more down-to-earth of the inspirations of the artist-engineers, some were products of more obscure working engineers, and some were contributions of anonymous smiths, masons, and craftsmen. Wider diffusion of many devices is reflected in their familiar treatment in iconography, such as the carpenter’s brace and bit (crank application) shown in a basket carried by a Roman soldier in Meister Francke’sCarrying the Cross (1424).83 Taken all together, the incremental improvements, newfound applications, and wider diffusion added up to significant advance through the century and pointed the way to the future no less than did the imaginative renderings of Leonardo and his peers.

The turbine, a conception of Francesco di Giorgio, was actually put to work, though for an unexpected purpose. An advanced version of the waterwheel, deriving power from water (or gas) passing through it to spin an outer runner (rotor) armed with blades, the turbine eventually powered steamships and electric generators, but its fifteenth-century function was to serve as a turnspit governor; the hotter the fire burned, the faster the hot gas spun the turbine above and turned the roast.84

image

In this version of a paddleboat sketched by Mariano di Jacopo Taccola, the current turns the paddle wheels, which reel in the rope, propelling the boat upstream (the man helps by pulling on the rope). [Bibliothèque Nationale, Ms. lat. 7239, f. 87.]

Leonardo proposed employing the turbine principle in a centrifugal pump to create a vortex high enough to spill over the containing vessel, as a means of draining swamps. By this time an anonymous inventor, probably in the Low Countries, had come up with a more practical idea: a radically improved windmill design. The tower, or hollow-post, mill mounted the mill mechanism in a revolving turret that could be turned without needing to move the entire structure. The water was lifted either by the scoop action of a vertical wheel or by an Archimedes’ screw.85

The other great prime mover, the waterwheel, continued to expand its functions, creating lakes and streams (and sometimes impeding navigation) while powering industrial operations that now included smelting, forging, cutting, shaping, grinding, and polishing metals. It helped produce beer, olive oil, mustard, paper, coins, wire, and silk; it lent its powerful assistance to fulling cloth, sawing wood, boring pipes, and (by around 1500) ventilating mines. It supplied the power for an improvement in city water supply that began in south Germany with the introduction of piston pumps driven by undershot waterwheels.86

The Chinese treadmill-paddle-wheel boat, an application of the waterwheel in reverse, either reached Europe in the fifteenth century by stimulus diffusion (as Needham believes) or was independently invented. It appears in several manuscripts of the artist-engineers and in the following century was built in Spain, where it was long used for harbor transport.87

image

Cutaway model of man-powered paddle-wheel boat, after a sketch by Leonardo da Vinci, in the Museo della Scienze e della Tecnica, Milan.

One of waterpower’s most important fifteenth-century applications probably came in the task of pumping out mine shafts.88 Of the variety of pumps, bucket chains, animal treadmills, and windlass-powered devices shown in Agricola’s classic De re metallica(On metallic matters), published in 1556, some were certainly in operation in the fifteenth century. A famous one was designed by Jacob Thurzo of Cracow to deal with the chronic water inrushes of the deep silver-lead mines of the Carpathians in Hungary: an endless two-drum bucket chain powered by an animal treadmill. The device became the technical basis for a major new mining enterprise of Jacob Fugger, the moneyman of Augsburg, financial backer of Maximilian of Habsburg.89

Another anonymous innovation that appeared in the metal mines was the wagon mounted on wooden rails, drawn, until the arrival of the steam engine, by animal power. The fifteenth-century carriage makers supplied the future railroad with the pivoted front axle, ancestor of the bogie.90

In 1451 in the Austrian Tyrol, Johannes Funcken invented a new smelting technique to separate silver from lead, an improved version of the cupellation process used by the Romans and described by Theophilus Presbyter. It involved heating cakes of lead, copper, and silver to run off into ladles in which an experienced smelter could separate out the silver. The process supplied another technical assist to Jacob Fugger’s mining and metallurgical enterprise and to the Habsburg hegemony in central Europe.91 The even better mercury amalgam process arrived in time to aid in the Spanish exploitation of American silver mines, also to the benefit of the Habsburgs.

As the blast furnace and refinery delivered an increasing supply of iron to the forge, the smith received help in handling it from the waterwheel via a new device (old in China), the tilt hammer, or trip-hammer. A heavy iron head on a wooden shaft was lifted and released by a drum armed with cams. Rising, it struck a wooden spring beam; the spring’s recoil added force to the downstroke. Alternatively an iron block in the floor under the hammer tail achieved the same result.92

Around 1500, and probably before, the slitting mill made its appearance in the iron-rich Liège district. The demand for nails was increasing; the new mechanism provided the smith with slender rods easily converted into nails. It consisted basically of a pair of rotary disk cutters turning in opposite directions. “The first piece of true machinery after the power hammer to be introduced…of even greater importance, it contained the elements of the rolling mill” (W. K. V. Gale). In fact, it gave birth to the rolling mill: two iron cylinders powered by waterwheel flattening a bar of iron passed between them.93 Into modern times, the rolling mill remained a basic tool of the iron and steel industry.

In the year 1500 iron production for the whole of Europe amounted to the impressive figure of 60,000 tons, according to the estimate of Rupert Hall. Nor was iron the only metal experiencing a boom. Church bells and cannon created a demand for bronze that stimulated larger and larger installations. Both bells and cannon required large quantities of metal and a high degree of skill; bell metal, 23 to 25 percent tin, depended on precision in casting to ensure the proper ring.94 Among Leonardo’s sketches are a reverberatory furnace (one in which the ore is not in contact with the fuel) to produce large quantities of metal for bell founding and cannon casting, and a crucible furnace in which six crucible pots were aligned in a sloping flue up which the flame swept “like a blowtorch.”95

image

Tilt hammers, sketched by Leonardo. [From Codex Atlanticus, 21 r.a. Science Museum, London.]

image

Leonardo’s “furnace of the controlled flame,” in which six crucible pots were aligned in a sloping flue. Model in the Museo della Scienze e della Tecnica, Milan.

The expansion of mining and metallurgy benefited agriculture by increasing the number of tools available and reducing their cost. Metal implements of every sort “figured a great deal more commonly in the everyday life of the sixteenth century than in that of the fourteenth.”96 A peasant anywhere in Europe had a far better chance than his great-grandfather of owning not only the basic complement of farm tools but plow and cart (not to mention horses and oxen).

In the wake of the Black Death, land too became cheaper, leading to two significant changes in land use. One was the shift to sheep farming, especially widespread in England, where open-field villages were enclosed, the inhabitants sent packing by the new owners, and the land turned over to the sheep. Shepherds and their dogs moved into the manor house while the village dwellings slowly fell to pieces. A second change, especially noticeable in central Germany, was the regeneration of forest where clearings were abandoned for lack of labor to cultivate them. Scrub birch and hazel took over the empty fields, to be replaced in time by beech and other tall forest trees. Georges Duby writes, “The return of natural vegetation in the fourteenth and fifteenth centuries is an episode…of equal importance to the adventure of clearing the wastes.”97

The enclosure movement reflected the continued growth of the textile industry, which in the course of the fifteenth century improved both its spinning and its weaving instruments and introduced changes in the organization of work. New patterns of consumption developed, and geographical shifts in manufacture took place.98

An attachment to the spinning wheel, the flyer spindle, sketched by Leonardo and once believed to have been invented by him, is now known to have been borrowed from the silk-throwing process and long used in spinning wool in northern Italy. In this device, as the spindle turned, a flyer—a fork with toothed projections—revolved around it at a different speed, giving the yarn an extra twist. Fork and spindle were moved by separate wheels, powered by the same transmission belt but turning at different rates because of their different diameters.99

The final medieval improvement to the spinning wheel, probably occurring late in the fifteenth century, was the addition of a treadle to power the wheel, leaving the spinner’s right hand free to regulate the delicate task of feeding the raw material to the spindle. The result was a product that was more regular and of better quality.100

In the organization of work, while the putting-out system survived in eastern Europe, it was gradually replaced in the West by the beginnings of a true factory system. In some places the factory was partly dispersed; in Florence a cadre of finishers was employed in the merchant’s shop while the weavers continued to work in their own homes. In both home and workshop, bells rang for the beginning and end of the working day as well as for meals, and inspectors regularly monitored all the workers.101

In a second form of factory that appeared in England, the sheep-raising landowner established production on his own manor, outside the jurisdiction of both city and guild regulations. At first, as in Florence, the workers labored in their homes and were visited by inspectors. Later they sometimes operated in a central workshop such as the one described, factually but with considerable exaggeration, in the sixteenth-century ballad “The Pleasant History of John Winchcomb, Called Jack of Newbury.” The establishment of Jack of Newbury (d. 1519), according to the ballad, was equipped with a thousand looms and employed over a thousand persons, all under one roof. More reliable accounts describe similar but more modest arrangements. The historian John Leland (c. 1506–1552) tells of an entrepreneur who installed his textile factory in an abbey, in which “every corner of the vast houses…be full of looms.” Later the same man acquired another monastery, laying out streets around it, each dedicated to a special function of cloth production.102

As wages rose and prices fell in the aftermath of the Black Death, patterns of consumption shifted. The wool and silk industries found it profitable to produce less expensive fabrics to appeal to middle-class customers, while cotton and linen manufacturers exploited the lower end of the market, providing peasant households with bedding, table linen, and undergarments to take the place of their traditional homespun. To serve the new customers, cloth-making centers specializing in cheaper grades sprang up in England, Holland, Germany, France, Spain, and Switzerland.103

The northern Italian cotton industry received competition from southern Germany in the form of cheap but durable fustian, a mixture of linen and cotton known in Europe for at least three centuries but now mass-produced. The German fabric was woven with a warp of local linen fibers and a weft of cotton yarn imported from Venice and Milan. Later the weft was also produced locally, spun from bales of raw cotton bought in northern Italian ports and transported over the Alps. The German fustian industry, which founded several fortunes including that of the Fuggers, was decentralized and largely rural. Merchant capitalists in the towns employed numbers of weavers in the countryside, who enlisted local spinstresses to spin the cotton weft thread and bought linen warp in the local market. The weavers were “less skilled, less supervised, and more poorly paid” than those of the Italian cities, accounting for the lower quality and price of their product, which gradually undermined the Italian cotton industry. A shift completed in the sixteenth century moved cotton from the Mediterranean ports and Italian cities to the Atlantic ports and northern Europe, with raw material beginning to come from the New World.104

Another, quite different, ancestor of modern mass production appeared in Venice. In the Venetian Arsenal the arming and equipping of war galleys was accomplished by a primitive form of the assembly line. A Spanish visitor, Pero Tafur, wrote an account of the operation that he observed in 1436:

As one enters the gate there is a great street on either hand with the sea in the middle, and on one side are windows opening out of the houses of the arsenal, and the same on the other side, and out came a galley towed by a boat, and from the windows they handed out…from one the cordage, from another the bread, from another the arms, and from another the ballistas and mortars, and so…everything that was required, and when the galley had reached the end of the street…she was equipped from end to end. In this manner there came out ten galleys, fully armed, between the hours of three and nine.105

In civil engineering, Renaissance architecture created a building boom whose principal technical advances came in lifting machinery, such as the counterweighted pulley hoist devised by Brunelleschi which allowed a rope drum to reverse and set down a load without disturbing the motion of the winch or animal treadmill and which delivered stone blocks, brick, lime, sand, and water for the cupola of the Florentine Duomo. Two pinions, an upper and a lower, could be made to connect with a large wheel, lifting the load or the counterweight.106

image

System of portcullis lock gates, sketched by Francesco di Giorgio. [Trattato dell’architettura, Codex Ashburnham, 361 f., 41a. Biblioteca Medicea-Laurenziana, Florence.]

The long-standing problem of lock gates was mastered by an idea from China, given perfection by Leonardo. Early lock gates, either simple double doors swinging on hinges or vertical portcullises that lifted straight up, offered insufficient resistance to the pressure of water on the upstream side of the lock basin, and the portcullis type had the disadvantage of needing a high clearance for boats. The Chinese design that reached the West in the fourteenth century provided double doors facing upstream at an obtuse angle, so that the pressure of the stream only forced them more tightly together. Leonardo, after studying the locks in the Visconti canal system around Milan, added a stylish touch: mitered gate edges that met in a snug fit. Water was admitted to the lock basin through small sluices cut in the gate.107

image

Leonardo’s mitered canal lock-gates. [From Codex Atlanticus, 240 r.c. Science Museum, London.]

The mechanical clock spread rapidly in the fifteenth century, becoming a feature of private houses as well as royal palaces and communal towers.108 A late-fifteenth-century invention, the mainspring, second in importance only to the escapement, made timepieces not only portable but cheap.109 The pocket version got its name “watch” from the town watchmen who took to carrying it.110 But although the watches had alarms and struck the hours, they kept only indifferent time. The trouble lay in the variable torque of the mainspring, which grew weaker as it unwound. The solution lay in the fusee, a device sketched by Konrad Kyeser in Bellifortis as part of a crossbow and applied to clockwork in Prague in 1424: it was a cone around which a cord connected to the spring was wound. As the spring uncoiled, the diameter of the cone increased, augmenting the leverage and compensating for the weakening of the spring’s pull.”111

The earliest application of the mechanical clock to scientific use came in 1484 when Walterus, landgrave of Hesse, another prince with scientific and technological interests, measured the interval between the transits of the sun from noon to noon, using a mechanical clock.112

image

Fusees and clock mechanism, on right, sketched by Leonardo (on the upper left, a finned explosive projectile). [M. B, f 50v. Science Museum, London.]

In the decorative arts, two landmark technical innovations appeared. Oil as a painting medium was mentioned by Theophilus Presbyter in the twelfth century, but egg-based tempera reigned supreme until a process for refining linseed oil, producing volatile solvents, was developed, mainly in Venice. Pigments dispersed in the treated oil created a responsive medium, exploited early by the Van Eyck brothers in Bruges and a number of artists in Italy (and seized on by Gutenberg for printer’s ink).

The maturing of the casting art encouraged the creation of bronze statuary; the first equestrian figure to grace a public square, a statue of the Florentine condottiere Erasmo Gattamelata, was executed in 1453 by Donatello, who also cast a statue of David for the Medici palace, the first bronze fountain piece of the modern world.113

Thus medieval technology made a direct contribution to art. It made a larger indirect contribution in helping to create such fortunes as that of the Medici. Besides Donatello’s statue of David, Cosimo de’ Medici (1389–1464) commissioned several madonnas by Fra Lippo Lippi, frescoes by Fra Angelico (for the monastery of San Marco), one of the first great equestrian frescoes, by Andrea del Castagno, a madonna by Flemish master Rogier van der Weyden, terra-cotta reliefs depicting the labors of the field, by Luca Della Robbia, and for his private chapel a Procession of the Magi that included portraits of members of the Medici family, by Benozzo Gozzoli.114

The Ocean Ship

European seaborne commerce expanded in every dimension in the fifteenth century: more ships, larger tonnages, better port facilities. Quayside loading and unloading of sailing ships was now established in northern, southern, and Atlantic ports. The Low Countries pioneered technology for harbor maintenance, such as the dredge built by the Dutch to scrape the harbor bottom at Middelburg with a ponderous rake, loosening silt to be carried out by tidal current. Leonardo sketched a more sophisticated solution in the form of a twin-hulled dredge with scoops mounted on a vertical drum, but effective instruments awaited the next century.115

image

Model of Flemish carrack, c. 1480, with lateen sail on mizzen mast, and stern rudder. [Science Museum, London.]

By far the most important new element in navigation was the full-rigged ship, “the great invention of European ship designers in the Middle Ages” (Richard Unger),116 which “enabled Europeans to harness the energy of the wind over the seas to an extent inconceivable to previous times” (Carlo Cipolla).117 Its principal fifteenth-century form, the carrack, represented the final step in the centuries-long evolution of the round ship: essentially the northern cog, as modified by Mediterranean builders, with further refinements added by Basque shipbuilders of the Bay of Biscay. A large, heavy tub with a big spread of canvas, the carrack had a stout length-to-breadth ratio of three and a half to one or less. The massive skeleton ribs that framed its hull, now carvel-built in northern as in southern yards, supported two or even three decks. A majestic sterncastle rose aft of the mainmast, balanced by a smaller but higher forecastle.118 Its edge-to-edge planking was tightly caulked with oakum (shredded hemp) and tar or pitch and given an outer protection of wales and skids to cushion the collision with the quay.119 Few hatches and no companionway helped make it watertight in heavy weather.120 The tiller that operated its sternpost rudder passed through a port in the stern to a whipstaff.

Of its three masts, the main and foremast were square-rigged and supplied most of the power. The mizzen, rising from the sterncastle, was lateen, for control. The huge mainsail hung from a yard as long as the ship itself, below a much smaller topsail; the foremast carried a single square sail. By the end of the century another small sail, the spritsail, on the bowsprit, assisted the lateen in control.121 Genoa and Marseilles were reputed sources of the best sailcloth (cotton or linen canvas). The square sails were now easier to handle, thanks to improvements in the ropes. The mainsail could even be used to assist the tacking maneuver; as the ship came into the wind, it was raised momentarily to swing the bow over to the new tack.122 The multiplicity of sails proved invaluable when it came to navigating narrow waters, and did not demand more crew, since the sails were worked one at a time.123

The best bulk carrier yet built anywhere, the carrack could take up to a thousand tons of wheat, salt, and timber in its capacious hold.124 Ranging freely and securely from the Baltic to the eastern Mediterranean, entirely supplanting the sail-and-oar galley on the Italy to Flanders run, it supplied the critical means for implementing the new interdependence of the economies of northern and southern Europe.

Columbus’s Santa Maria was a carrack, though one of quite modest proportions, probably not much more than a hundred tons. His two smaller ships; the Niña and Pinta, were products of a second, parallel line of development that began about 1440.125 The caravel was a shipbuilder’s solution to a very specific navigation problem: that encountered by Portuguese mariners groping their way down the west coast of Africa in search of the passage eastward to Asia. Carrying mixed or lateen rig and weighted with a cargo of no more than fifty tons, the slim caravel (the name a reminder of its carvel construction) had excellent sailing characteristics, including an ability to sail close to the wind that greatly facilitated the return voyage north to Portugal. Before the wind it was capable of a speed of up to eleven knots. Columbus’s Niña and Pinta, returning from America in 1493, made a day’s run of 198 miles.126 The caravel’s small crew and minimum supply requirements suited it to exploration of unknown and distant waters, and its maneuverability allowed it to fight off a lee shore even better than could the carrack.

The magnetic compass was now a mature navigation instrument. The fact that the needle did not point exactly north had been duly noted and allowed for; since no one knew why it pointed north in the first place, the discovery made little difference.127Simplified versions of the astrolabe and its variant, the quadrant, measured the angles of the two Guardians in relation to the North Star; the resulting data used in conjunction with tables gave latitude within about twenty-five miles.128 As the Portuguese African ventures reached further and further south, they proved the earth’s sphericity beyond a cavil by sighting new constellations, including the spectacular Southern Cross, but lost their ancient guiding light, the North Star. In 1484 King John II appointed a commission of mathematicians to study the problem and draw up tables of declination of the sun to be used at sea in conjunction with the astrolabe or quadrant; by determining the sun’s height at midday and consulting the tables, sailors could ascertain latitude.129 A new navigation technique was born: the skipper first sought the correct latitude for a certain port or point of land, then ran along the line of latitude to his target destination.130 To the tables of declination were added charts of known coasts and pilotage information. Arab and Chinese pilots of the Indian Ocean already knew how to find latitude, but they never adopted the European custom of carrying charts on board that made it easy to repeat an exploratory voyage with high accuracy.

Despite the advances, navigation at the end of the century still demanded much in the way of experience, judgment, and instinct. Liberation from dead reckoning required a means of determining longitude, which awaited the invention of the chronometer in the eighteenth century. The advances of the fifteenth made it possible, not easy or safe, to explore the immense Ocean Sea and its rumored, but unnamed and uncharted, coasts and islands. But what technology makes possible, someone undertakes.

General knowledge of geography was expanded by publication in Latin in 1406 of the tardily translated Guide to Geography of Ptolemy, who had compiled his gazetteer-atlas-world-map information in the second century A.D. Necessarily sketchy and inaccurate, it nevertheless added considerable detail to medieval knowledge. Ptolemy’s errors did not all go undetected; Pope Pius II (reigned 1458–1464) exposed one, that of an Indian Ocean landlocked by a dim southern continent. Most significantly, while strengthening the perception of a spherical earth, Ptolemy perpetuated the optimistic reduction of its size and proportion of water made by Marco Polo and Pierre d’Ailly. Columbus, who studied all three authorities, and was prejudiced to begin with, inevitably accepted their calculations. The oldest extant map in the form of a globe, made by Martin Behaim, a German who had been long resident at the Portuguese court, was of equally little help. Columbus took a Behaim globe with him aboard the Santa Maria, but it gave him false reassurance on the size of the oceans and was even curiously out of date on details of the coast of Africa.

Misconceptions still linger about the “spice trade” that motivated the voyages of discovery. Europeans have been credited with an insatiable appetite for seasonings, attributed either to monotony of diet or to a need to disguise the taste of meat that was thought to have chronically spoiled owing to lack of refrigeration. Both notions contain only a particle of truth. The peasant diet was certainly monotonous, but peasants could not afford imported spices. The diet of the well-to-do, the customers for spices, was a different matter: meat and fish at all seasons, and a list of fruits and vegetables that increased through the Middle Ages (oranges and lemons early, lettuce in the fourteenth century, artichokes and cantaloupe in the fifteenth), even before the influx of new products from the Americas. The popular Tacuinum sanitatis (Health handbook), which appeared in many fourteenth-century versions, also mentions among its vegetables and fruits spinach, asparagus, leeks, turnips, pomegranates, watermelons, cucumbers, green squash, sour cherries, cabbage, beets, and chestnuts.131

In respect to food preservation, medieval Europe was hardly worse off than nineteenth- and early-twentieth-century Europe and America. A number of techniques were available: smoking, salting, and drying, and also on-the-hoof preservation—oxen, goats, sheep, poultry, and pigs driven live to city markets, game and domestic animals killed and eaten forthwith. Affluent households in town and country stocked fish tanks and ponds. There was little need to disguise spoiled meat (which the wealthy would have refused to eat). There was, however, a need to add flavor to meat that was usually subjected to long cooking in liquid because of its toughness.

That fact alone hardly explains the importance of the spice trade. The real keys to the mystery are two. The first is the physical character of spices: extreme compactness in proportion to value, and resistance to spoilage. Though not outrageously expensive to the consumer—a little pepper or saffron goes a long way—they carried very high price tags for the amount of cargo space they took up. This was a consideration of overriding importance when most ships could carry no more than a hundred or two hundred tons. A merchant reserving cargo space aboard a Venetian or Genoese vessel on the Syria run filled his quota with the most valuable merchandise per weight that he could find: gold and silver ornaments, jewelry, silk, and spices.

The second key to the mystery is a matter of vocabulary. The medieval use of the word “spices” covered a vast multitude of useful commodities, only a portion of which were destined for the cooking pot. Robert Lopez summarizes them as “seasonings, perfumes, dyestuffs, and medicinals.”132 Florentine merchant Francesco Balducci Pegolotti’s La pratica della mercatura (The practice of commerce), in its comprehensive list of 288 “spices” carried in fourteenth-century commerce, enumerates, alongside anise, cinnamon, cumin, ginger, cloves, nutmeg, pepper, sugar, fennel, and citron, such pharmaceuticals, dyes, industrial additives, and miscellaneous items as camphor, wax, alum, rosewater, cotton thread, paper of Damascus, glue, ivory, indigo, frankincense, shellac, musk, linseed oil, niter salt, soda ash, soap, turpentine, Venetian copper, nux vomica, and gold leaf.133 This large array originated in a wide scattering of sources in India, Indonesia, and southeast Asia, and moved to Europe partly by ship (via the Persian Gulf or Red Sea), partly by caravan or pack train, with many transshipments, many tolls, and much danger of loss. A sea route that would permit a ship to sail from Europe all the way to the “Indies,” load up, and sail back with a hold full of “spices” would guarantee a fortune per voyage.

The spice trade did not begin in the Middle Ages. Pliny comments on the widespread use of pepper, with which Rome was so plentifully supplied and with which the barbarian Goths were so familiar that when Alaric exacted a ransom from the city in 408 he included in his demands 3,000 pounds of pepper.134 Nor did the spices by themselves account for the Age of Exploration. Other motives entered in. Religious proselytizing was as old as Christianity and had won converts, willing or reluctant, among third-century Goths, fifth-century Franks, the wild Vikings of Scandinavia, and the Poles and Magyars of eastern Europe. Whether proselytizing came first and profit second or vice versa may be an open question, but to the lure of spices should be added that of certain other merchandise, notably gold, increasingly needed to fuel the Commercial Revolution. Spanish conquistador Bernal Díaz voiced a Christian-capitalist ideal in expressing the wish “to serve God and his Majesty, to give light to those who were in darkness, and to grow rich as all men desire to do.” A modern historian has evaluated with succinct cynicism: “Religion supplied the pretext and gold the motive” (Cipolla).135

The medieval character of exploration and its motives is underlined by the kind of inducements offered to the explorers. The Portuguese kings agreed to give their captains a share in newfound lands along with the profits of civil and criminal justice and the monopoly of mills, ovens, and salt. The letters patent given Venetian John Cabot by the king of England included the governorship of new lands, a monopoly on their produce, and duty-free importation, with a fifth of the profits to go to the Crown.136

Another motive was fishing. Cod disappeared from the coastal waters of Europe just as an improvement in fish-packing technology, a press to pack the salted cod into barrels, was invented. Basque and other fishermen may have found the fabulous codfish grounds of the Grand Banks before Cabot did in 1497–98 without ever advertising their discovery (as fishermen often do not).137

Finally there was the lure of the unknown but knowable, the opportunity the full-rigged ship gave to find answers to the mysteries that had baffled and fascinated European intellectuals from Ptolemy to Toscanelli. “One of the most powerful incentives for Atlantic exploration was the quest for islands” (J. R. S. Phillips) whose existence had been persistently bruited by sailors and mapmakers.138

That the lead was taken by the new and small kingdom of Portugal was owing partly to Portugal’s unique geographical position, fronting the Atlantic but close to the gateway to the Mediterranean, and partly to the progress of the Reconquista. With the last Muslims driven out of Portugal, the natural continuation was to carry the war across the water to North Africa, which the Portuguese did in 1415 by seizing Ceuta, across the strait from Gibraltar. Quite apart from a route to the Indies, Africa itself was worthy of attention as a known source of gold bullion, and the early Portuguese exploration south was oriented to Africa’s rather than Asia’s wealth.139

Although recent scholarship has somewhat discounted the individual contribution of Prince Henry the Navigator, he remains a remarkable figure, employing funds available to him as master of the Order of Christ to attract geographers and savants to Lisbon and to fit out expeditions. The first fruits were the Madeira Islands to the south, already discovered by the ubiquitous Genoese in the fourteenth century and rediscovered for Portugal in 1418; and the great chain of the Azores (1427–1431), a third of the way across the Atlantic. Both archipelagos were barren of inhabitants, and both proved highly colonizable, congenial to the cultivation of sugar, one of the most treasured of the spices. The west coast of Africa was reconnoitered by a series of imaginative voyages in which the caravels turned the prevailing winds to advantage by first sailing well out into the Atlantic, then angling back to the African coast, where the few river mouths and inlets were one after another discovered. Trading with the natives netted gold, slaves, and elephant tusks. These last quickly captured the ivory market from the walrus tusks of Greenland, whose Viking colony, hard hit by the Black Death and a prolonged cold wave, gave up and retreated to Iceland. Greenland reverted to its Inuit (Eskimo) natives, thus putting an end to the sterile Scandinavian northern adventure just as the fruitful Portuguese southern adventure was picking up momentum.140

In both directions, west and south, distances proved disconcertingly longer than navigators had been led to believe by the authorities, but in 1488 the Cape of Good Hope was at last rounded, and in 1499 Vasco da Gama, a soldier given charge of a three-ship expedition, made it back to Lisbon with two ships loaded with enough spices to pay for the voyage several times over.

Da Gama’s ocean trail was swiftly followed by ships of all the western European nations. Surprisingly, as Fernand Braudel has pointed out, it was not followed in reverse by Asian ships. Large Chinese multisailed and multidecked junks had shown themselves fully capable of long-distance ocean voyaging; Admiral Cheng Huo’s fleet made a succession of voyages to India and East Africa between 1405 and 1433. Why the Chinese tamely abandoned the European spice trade to the Europeans remains a historical mystery.141

In the other direction, westward, Portuguese exploration was checkmated by its very success in discovering and colonizing the Azores. Using the Azores as a base, Portuguese mariners trying to sail into the teeth of prevailing winds got nowhere, but a southbound expedition, under Pedro Cabral, taking the usual long southwest tack followed by a return southeast, discovered Brazil. By that time, Columbus, still another Genoese who took service with Portugal, but ultimately sailed for Spain, had put into effect his own adventurous plan, which was to start not from the Azores but from the Canaries, a long-inhabited archipelago several hundred miles south, now in the possession of Spain. From there he was able to pick up favorable winds to carry him to what he imagined to be the islands and coasts of Asia, and to use the westerlies to get back to Spain.

One resounding irony of Columbus’s voyage is that the New World produced none of the traditional spices he sought but supplied a trove of entirely new foodstuffs for the European table: maize (corn), potatoes, chocolate, peanuts, tomatoes, pineapples, green beans, lima beans, red and green peppers, tapioca, vanilla, and the turkey. At the same time, America gained many European crops: wheat, barley, broad beans, chick-peas (garbanzo beans), sugarcane. Asia and Africa were brought into the general exchange, Asia receiving sweet potatoes, pineapples, papaya melons, and chili peppers while giving America bananas, rice, and citrus fruits. Africa received maize, manioc, sweet potatoes, peanuts, and green beans, and sent to America yams, cowpeas, coconuts, coffee, and breadfruit.142

Yet another irony: Columbus’s voyage, as it turned out, neither depended on nor demonstrated the sphericity of the earth, since he could have made the same trip, Spain to the West Indies and back, on a flat earth.

Whether Columbus was preceded by Irish missionaries, Bristol merchants, Basque fishermen, or anonymous Portuguese explorers was once regarded as worthy of scholarly debate. Today, as better acquaintance with medieval history improves our perspective on the Age of Exploration, it is easy to see that remarkable though Columbus’s feat was, the European discovery of “America” was inevitable within a short time, and even without Cabral’s fortuitous landfall in Brazil. Motives were sufficient, and means, developed over centuries, were ample.

image

Conjectural model of Columbus’s Santa Maria. [Science Museum, London.]

1500 AND AFTER:
“WESTERN CIVILIZATION”

The America that Columbus discovered for Europe had supported its human population for unknown thousands of years, long enough to develop its own civilizations which in many respects (for example, irrigation agriculture) were remarkable indeed. But its isolation from the rest of the world after the submerging of the Aleutian-Bering Sea crossing had imposed handicaps. The Americas offered no large animals suitable for riding and traction, although the Peruvians had domesticated the little llama for pack carrying. Maize was widely cultivated, but wheat was absent. In most regions tools remained of wood, bone, and stone. In the absence of traction animals, the wheel was not invented (except as a toy); consequently, the wheeled vehicle, the potter’s wheel, the spinning wheel, and the waterwheel all remained unknown.

The discrepancy in technological levels conditioned much of the relationship between the European discoverer-adventurers and the native Americans. The first appalling consequences, however, were due to something else: the lack of immunity of the Americans to European diseases—influenza, malaria, measles, and above all smallpox. In Europe mainly a childhood disease that conferred immunity on adult survivors, in America smallpox lethally attacked people of all ages, creating steep, long-range demographic declines.143 These catastrophes were by no means deliberately inflicted; on the contrary, the European invaders wanted a healthy and numerous native population for labor recruitment. Plenty of room for criticism of the treatment of the natives remains, not only, it should be noted, by the Spaniards, who have commonly been made the scapegoats, but by others, including the English and their American descendants. Lack of immunity, incidentally, cut both ways; Columbus’s expedition has been credited with bringing back to Europe syphilis, a minor ailment in the Western Hemisphere but a ferocious one in Europe; yellow fever similarly discriminated against the explorer-invaders.144

No pathological disasters followed European expansion in Africa and Asia, which evidently shared immunities with their European neighbors. Not that Africa and Asia had reason to be happy with their visitations; Africa became a source of slaves to work the mining and agricultural enterprises of America, and Asia in due course felt the weight of imperialism. Yet the Europeanization of the world, whatever losses it has entailed along the way, is virtually complete and has been almost universally accepted at least in its material aspect. Few today want to return to the civilizations of Greece and Rome, or to those of the Aztecs and Incas.

Global Europeanization took several centuries and embraced much more than technology. But at the heart of the historical process that wrought the vast alteration lay the slow revolution in tools and processes that transpired in Mediterranean and northwest Europe between the sixth and sixteenth centuries. During that medieval millennium, Europe left the world of Rome far behind, while overtaking China and India. The rising technological level of medieval Europe is reflected in the improvement in daily life and work: from slave labor to free labor, from human drudgery to animal power and waterpower; from luxury handicrafts to mass production for mass markets; from handwritten manuscripts for a scattering of intellectuals to printed books for a large audience; in metal tools and metalware, profusion in place of scarcity; and a long list of useful novelties, from clocks to canal locks. And, not to overlook the dark side of progress, gunpowder weapons, the one legacy of medieval technology that was indeed “pernicious.”

Europe built its new “Western civilization” on a material foundation that it created not merely by borrowing freely from others but by making its borrowings extraordinarily effective. “A technologically progressive society,” says D. S. L. Cardwell, “is…both willing and able to accept and apply inventions from whatever source they may come.”145 Just how much of Europe’s technology actually derived from Asia remains a mystery awaiting scholarly detective work. A comment of Joseph Needham in respect to cast iron may be more widely applied: “Admittedly there is no one clinching piece of evidence, but rather a mass of hints.”146 Asian priority in a wide range of innovations is established. Asia, however, showed little inclination to borrow, and so, after giving much to others, allowed its own technology to wither, as demonstrated in the history of the two epoch-making inventions of printing and firearms. Each originated in China, but each was allowed to languish, while Europe seized them in both hands to make them major instruments of change. An authority on technology transfer in the modern world asserts that the process “is not just a matter of moving some piece of hardware from one place to another…A material infrastructure is not enough. There must also be sufficient nonmaterial infrastructure.”147 In the “nonmaterial infrastructure” of medieval Europe was a spirit of progress whose ingredients included intellectual curiosity, a love of tinkering, an ambition “to serve God” and also “to grow rich as all men desire to do.”

A sense of progress implies a sense of history, something missing among the Egyptians, Greeks, and Romans. “Lacking any objective understanding of the past—that is, lacking history,” says Cardwell, “the hierarchical and slave-owning societies of classical antiquity failed to appreciate the great progress that had been achieved by and through technics.”148 On the contrary, the ancients were fond of looking back to what they conceived as a vanished “golden age,” a conception the reverse of progress. The Christian Church, whose pioneering monastic orders made many practical and material contributions to medieval technology, also supplied a noncyclical, straight-line view of history that allowed scope for the idea of progress.

Optimistic and utilitarian, fifteenth-century Europe’s craftsmen, smiths, engineers, and shipbuilders sought better ways to do things, make things, make things work. Carlo Cipolla identifies their keynote: “Machines came to play an increasingly important role in the production process.”149 The fifteenth century’s Francesco di Giorgio Martini explained why: “Without mechanical ingenuity the strength of man is of small avail.”150 Francesco echoed Hugh of St. Victor’s concept of man, “naked and unarmed” but equipped with reason in order to supplement his weak powers by invention.

In seeking ways to multiply the feeble strength of man, medieval Europe found its most effective instrument in the vertical waterwheel, the world’s chief prime mover until the invention of the steam engine. Neither Rome nor China succeeded in harnessing its power to the extent that medieval Europe did. Terry Reynolds summarizes the encompassing role it achieved in the high Middle Ages: “The house medieval man lived in might have been made of wood sawed at a hydropowered sawmill…The flour he ate…the oil he put on his bread…the leather of the shoes he put on his feet and the textiles he wore on his back…the iron of his tools…the paper he wrote on” all were produced in part with the aid of waterpower.151

A valuable spin-off from the waterwheel was the encouragement it lent to experimentation with key mechanical auxiliaries: gears, cams, cranks, and flywheels. It did not at once bring on the Industrial Revolution. “There were too many social obstacles and too many technical difficulties for any general mechanization,” says Bertrand Gille. “Nevertheless, the progress achieved was far from negligible and marks a considerable advance on the machinery of the ancient world.”152 It also promoted the evolution of the blast furnace, indispensable to supplying metal in a volume suitable to a mechanized industry. Such an industry also required skilled and knowledgeable workers; the invention of clockwork contributed to the skill and the invention of printing to the knowledge. As Terry Reynolds summarizes, “The roots from which the modern factory system emerged were quite deeply imbedded in the Middle Ages…there were no sharp breaks between the water-powered fulling and iron mills of the late Middle Ages and the textile mills of Strutt and Arkwright.”153

In its organization of work, too, the high Middle Ages took a giant stride. The putting-out system—the “factory scattered through the town”—and its successor arrangements in Italy, England, and Germany clearly pointed the way to the future. In another dimension, so did the Venetian Arsenal and its pioneering “assembly line.”

The Scientific Revolution of Galileo, Tycho, and Newton also profited from the intellectual and practical contributions of the Middle Ages, notably the invention of the convex lens. “In the Scientific Revolution of the sixteenth and seventeenth centuries,” says Derek de Solla Price, “the dominant influences were the craft tradition and the printed book.”154 Thus technology served science, foreshadowing a future full partnership of the two. Nor should the role of medieval scientific thought be overlooked. The old picture of modern science springing directly from Aristotle and antiquity has lost validity: “Modern science…is rather the child of medieval science” (Richard Dales).155

Although the age succeeding that of Leonardo witnessed a relaxation of the pace of technical change, the perception of technology gained noticeably in stature, “capturing a place it had never before occupied” (Bertrand Gille).156 For one thing, it had gained political importance, not only in the form of small arms and artillery but in many areas of mining, metallurgy, and craft production in which the new national governments interested themselves. For another, through the medium of printed books, technical information became diffused in the general body of knowledge.

Technology is rarely an unmixed blessing. The Middle Ages has been criticized by some modern historians for its depletion of the European forests. “Throughout the Middle Ages and Renaissance,” says Carlo Cipolla, “the Europeans behaved toward the trees in an eminently parasitic and extremely wasteful way.”157 The judgment seems severe in light of medieval man’s necessary dependence on trees for many purposes: building construction, tools, furniture, cooking and heating, the forge, the blast furnace, the bake oven, the pottery kiln, tile and brick making, glassmaking, distilling. In the absence of technological means for increasing yields, the only way to grow more crops to feed the increasing population was to cultivate more land. To provide arable land, and in the later Middle Ages meadowland, the forest had to give way. But as Roland Bechmann says in his study of medieval forest history, “It is during the Middle Ages that the idea of prospective planning and economical use of natural resources was gradually conceived by men who remained close to the land.”158 The Middle Ages was the first historical period to encounter the problem of limited natural resources, and it took the first small steps in dealing with it.

Besides royal and seigneurial protection of forests for hunting, many conservation initiatives are recorded, such as the enclosures established by the Cistercians in 1281 to protect seedlings and the mandating of tree planting by an Italian commune shortly after.159 In the fourteenth century, French royal ordinances regulated cutting of timber; in the fifteenth, Venice’s Council of Ten, concerned not only about deforestation but about the silting of the lagoons, strictly limited consumption of timber and prescribed planting of oak seedlings on common lands, with special sowings near the lagoons.160

That there were losses along with the gains in medieval technology is undeniable. Perhaps as much to be regretted as the destruction of forests was the other face of mechanization, the loss of handicraft skills, including those of the scribe and the artist who together created the illuminated manuscript.

“Technology,” says Melvin Kranzberg, founder of the Society for the History of Technology, “is neither good nor bad; nor is it neutral.”161 It is what each age and each society make of it. The Middle Ages used it sometimes wisely, sometimes recklessly, often for dubious purposes, seldom with a thought for the future, and with only a dim awareness of the scientific and mathematical laws governing it. But operating on instinct, insight, trial and error, and perseverance, the craftsmen and craftswomen, the entrepreneurs, the working monks and the clerical intellectuals, and the artist-engineers all transformed the world, on balance very much to the world’s advantage.

If you find an error please notify us in the comments. Thank you!